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1. INTRODUCTION

This workshop on "Dynamical Instabilities in Homogeneously Broadened
Lasers" represents the ninth of a series of intensive academic/ government
interactions in the field of advanced electro-optics, as part of the Army
sponsored University Research Initiative. By documenting the associated
technology status and dialogue it is hoped that this baseline will serve all
interested parties towards providing a solution to high priority Army
requirements. Responsible for program and program execution are
Dr. Nicholas George, University of Rochester (ARO-URI) and Dr. Rudy Buser,
NVEOC.



2. SUMMARY AND FOLLOW-UP ACTIONS

Dr. Pinto opened the meeting giving an overview of current projects and
problems of interest in the Laser Division. He discussed their work to find
efficient diode laser pumped solid state lasers in the 1 micro band. He went
into some detail concerning their interest in activating laser crystals for
broadband absorption of laser diode array emission, such as those discussed
in the article by A. A. Kaminskii. (Phys. Stat. Sol. 87, 11 (1985).

Dr. Stroud then gave a general introduction to the work going on in this
group at the University of Rochester involving laser dynamics in
homogeneously broadened laser systems. He briefly surveyed the recent
progress in understanding spiking and chaotic instabilities in homogeneously
broadened lasers.

Karl Koch then gave a presentation in the instabilities that he has been
studying in dye lasers, both intrinsic instabilities and the instabilities that are
induced by external modulation. He pointed out that in dye lasers and other
tunable lasers of the phonon assisted variety are not well described by simple
ideal 4 level models. He described the work going on in Rochester and in
Professor Haker's group in Stutgard on improved models for these systems.

Stephen Chakmakjian then discussed his work on alexandrite, another
phonon assisted homogeneously broadened laser. He described in some
detail modulation spectroscopic techniques developed in Rochester that
allow oneto easily measure the various lifetimes involved in the internal
population dynamics in these lasers.

Dr. Stroud then summarized the work and described some of the projects
that were planned or underway in this area in Rochester. This was followed
by a general discussion on the ways that the modulation techniques might be
usefully implemented to help characterize the activated crystals. Dr. Stroud
said that he was not really set up in his laboratory at present to systematically
go through a long list of materials and characterize them, but that he could
easily look at one or two. Another possibility is that one or two of the
students from Rochester might spend a few days at NVEOC to help in setting
up an experiment there to make such measurements.

Another problem in the Laser Division was developing a simple way of deter-
mining whether a potential laser material is homogeneously or
inhomogeneously broadened. Dr. Sroud discussed some of the usual
techniques, and promised to send Dr. Pinto a writeup summarizing the
problem.
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LASERS ARE NOISIER THAN THEY SHOULD BE

200 s/cm 11111m
5 ps/cm NMII rIIII

.IMF

1 us/cml?

100 ns/cm

Spiking in Ruby Laser output



ARE LASERS NATURALLY UNSTABLE?

* Described by NONLINEAR equations.

* General solutions do not exist.

• Behavior may be qualitatively different
for varying parameters and initial
conditions.

* Progress has been made in study of
driven nonlinear systems.

" System may be stable in some regions

of parameters by display

BISTABILITY

HYSTERESIS

CHAOS

for other values of parameters.



Homogeneously Broadened Lasers

Textbook:
"An ideal homogeneously broadened laser will operate
in one mode."

Engineer:
"Nonsense!"

Question:
Are broadband tunable lasers ideal homogeneously
broadened systems?

- -4



uj

u-

~LLJ .

LLJ J

Lw

ZZ

0

z0



HIGH-Q RING DYE LASER

5cm radius

focusing mirrorsN4'  dye jet

L Z /argon pump

\ brewster angle knife edge mirror
prism

5cm

Low loss

1 Watt pump produces 50 Watts circulating dye laser
power

10 lm focal spot generates 50 MWatts /cm 2 in the gain

region

Pinhole ensures single transverse mode



TWO- FREQUENCY INSTABILITY

CHARACTERISTICS

Low threshold < < 9 times above threshold

Two-frequency operation whose splitting increases as
the square root of the intensity.

Discontinuous jumps in output intensity and associated
hysterisis loops as a function of pump power.
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EFFECTS OF DETUNING
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UNIDIRECTIONAL OPERATION

5cm radius
focusing mirrors

, dye jet
aperture

4r iL cryta plat "brewster angle knife edge mirror
Prism

Faraday rotator permanent magnet

1

Bidirectional Unidirectional

The two frequency instability is still present in the
unidirectional laser.

The quartz crystal plate acts as an etalon and imposes a
coarse mode structure on the spectrum.



EFFECTS OF FREQUENCY
DEPENDENT LOSS

Iz55A z 47A-5970OA
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j6.0 _ _ _

S4.0.

2.0-_ _ _ _ _ __ _ _ _ _ _

5700 5950 6200
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TWO-FREQUENCY ANALYSIS

4

We analyze the atomic response to a field made up of two
frequencies of equal amplitude. The two components are
separated by 28ca. 8ca is referred to as the modulation
frequency.

T, 10 T2 QT2 = 0.0
T1 = 10OT 2

= 0.1 0

f2T2 = 0. ...

-3 0 3 6

&iT2
The saturated gain experienced by the two-frequency
field exhibits a dip near zero modulation frequency.

Maximum gain occurs for a nonzero modulation
frequency.
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BROADBAND OUTPUT
1*

Harmonc Nonlinear Harmonic
Input System Output

Lts I ! Power Spectra l t T I
(a 2c 3U 4ca 5ca 6 c 2o 3w 4 5 6w

QusierodcNonlinear E roadband

Input System output

Power Spectra 4#

(A 1G2 2ca 2 2 nA 1 + mC0 2

Driving nonlinear systems with two incommensurate
frequencies can produce broadba: .d output



RESULTS OF NUMERICAL CALCULATION
COMMENSURATE MODULATION FREQUENCIES-
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RESULTS OF NUMERICAL CALCULATION
INCOMMENSURATE MODULATION

FREQUENCIES
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Dye Laser Output vs. Argon Laser Input:
modulation above threshold
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COMMENSURATE MODULATION
FREQUENCIES

Input spectrum
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COMMENSURATE MODULATION
FREQUENCIES

Output spectrum
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INCOMMENSURATE MODULATION
FREQUENCIES

Input spectrum
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Input time series
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INCOMMENSURATE MODULATION
FREQUENCIES

Output spectrum

FISO
-10 '- 11

0 2 4
frequency (Msec-1)

Output time series
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0 150 300
time (iisec)
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Modulation Techniques in Homogeneous
Systems to Determine Decay Rates

hole burning

inhomogeneous broadening

homogeneous broadening

pump-probe techniques

AM modulation techniques

AM sensitivity (lock-in detection)
FM noise insensitive
single laser experiment



Applications of AM Spectroscopy

probe gain, or absorption in presence of
saturating field

single mode stability analysis

measure "hidden" non-radiative decay
rates

sensitivity of gain transition to pump
noise



Three Level Systems -
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Fluorescent Decay Rate
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Modulation Measurement
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Four Level Systems

RVr.\ 
C)

fluorescent emission rate measurement
cannot determine if non-radiative decay
from level 1 is slow

modulation measurement determines the
population cycling rate

slow decay from level 1 may cause
instabilities



Single Laser AM Experiments

ruby

alexandrite

modulator sample detector

function lockin

DC

vary 8o and monitor the
transmission

8*w
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Results of Single-Laser AM Experiments

a hole in the absorption spectrum of the
probe fields is observed centered at DC

the hole has width 1/T1 for weak DC field
strength

hole broadens as 1 + I / Isat

discrepancy with known 1/Ti rate in ruby

alexandrite reveals anti-hole due to
excited state absorption



Alexandrite Level Structure

can operate as a three level laser similar
toruby 1.5- r +RAm., oN

can operate as a four level laser similar to
dyes, a vibronic laser

VI-r A) -YA-

Src



Rate Equation Approximation

consider a two level system

optical Bloch equations:

u = -u/T2 - Av

v = Au-v/T2 + KE(t)w

W = -(W-Weq)/Ti - KE(t)v

collisional broadening, 1/T 2> > /T1

rate equation limit



Reduced Rate Equations

Three Level System

Four Level System

Tirn

FSTr



Multi-Level Two Laser AM Spectroscopy

dichroic sampleRed mirror sample

laserp

modulator

R-6g Ifunction  llocki n

pum lgenerator iamplifie r

computer

Experiments

modulate pump to study pump noise

modulate laser tuned to inverted
transition to study single mode stability
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In-Phase and In-Quadrature
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Variation of Half-Widths with Intensity
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Observation of resonances at sub-harmonics of the Rabi frequency in the saturated

absorption of a 100% amplitude modulated laser beam

Stephen Chakmakjian, Karl Koch, and C.R. Stroud, Jr.

The Institute of Optics

University of Rochester

Rochester, NY 14627

Abstract

A series of resonances has been observed in the absorption of a 100%

amplitude-modulated laser beam by an optically pumped sodium atomic beam.

Resonances were observed when the modulation frequency was equal to the

first, second, and third subharmonic of the Rabi frequency. The experimental

results are compared with theory and the implications of these parametric

resonances to laser instabilities are discussed.



INTRODUCTION

Researchers in the fields of modulation spectroscopy, optical bistability and laser

instability have become interested in the interaction of intense, strongly modulated fields

with atomic systems . A 100% amplitude-modulated (AM) field is a special case of strong

modulation since the energy at the carrier frequency has been completely transferred into

the modulation sidebands. In this paper we study the interaction of a 100% AM laser field

with an ensemble of homogeneously broadened two-level atoms.

Under the influence of a strong resonant field the atomic variables undergo Rabi

oscillations. If, in addition to the strong pump field, a weak probe field is applied, the probe

field will see a complicated structure in its absorption spectrum due to the presence of the

strong field. When it is detuned from the strong field by the strong-field Rabi frequency the

probe field experiences a resonance in its absorption spectrum.8 -'0 These results have been

experimentally confirmed 11-3. Sargent et al. i have shown how modulation techniques

can be employed to probe the saturated absorption of these strongly driven atoms.

Modulation techniques alleviate the need for a second laser. Instead, the strong field is

weakly modulated at a tunable frequency and the modulation sidebands probe the

saturated absorption. Hillman et al. 15 and Kramer et al. 6 showed that. the behavior seen in

the absorption spectrum of the probe field is a result of the atomic response to the

modulation tone in the field intensity. In their analysis they treated the interaction with

the strong field to all orders, while the interaction with the sidebands was treated

perturbatively. In the case of muitiple strong fields it is necessary to treat all the field

components and the combination tones to all orders.

Although the treatment of strong-modulation interactions is by no means complete,

there has been experimental work in this area.1 7,18 These strong-modulation experiments

yield different results from those seen in weak-modulation experiments. The atomic

variables exhibit resonant behavior when the modulation frequency is approximately

equal to the Rabi frequency or any subharmonic of the Rabi frequency. Bonch-Breuvich et

al.17 performed an experiment with two strong radio-frequency fields tuned to a Zeeman

2



resonance in cadmium. One radio-frequency field was held at a constant frequency as the

other field was tuned about the resonance to obtain an absorption spectrum. The

absorption spectrum of the rf fields exhibited several subharmonic resonances. Thomann' 8

performed a three-field experiment at the sodium D 2 line resonance. The field was

produced by strongly modulating a laser beam; the Rabi frequency was varied while the

modulation frequency was held fixed. Although a center frequency, the carrier, was

present in this experiment the physics is similar to the two-field experiments. At this point

it is helpful to review the theoretical predictions for the problem. 4 '6 19 "

THEORETICAL REVIEW

The response of an atomic system can be characterized, in part, by the rat. at which it

absorbs, or scatters, energy from a resonant laser beam. We employ a calculation

developed by Hillman et al.6 to calculate the rate of absorption from the optical Bloch

equations

ii.=-u/T2 -&v, (la)

AU .vIT2 + KE(t)w, (1b)

w- -(w +I)IT, - KE(t)v, (1c)

where A is the detuning, 11T2 and lIT, are the transverse and longitudinal decay rates

respectively. The dipole coupling constant, K, is given by

K = 2d/h (2)

where d is the dipole-moment matrix element and h is Planck's constant. We are interested

in the response of the atom to a 100% AM excitation. In this case the electric field

amplitude can be written as

E(t) = 2EIcos(Sat), (3)

where 8w is the modulation frequency and the amplitude of the electric field is E.

According to Floquet's theorem, the stationary-state response of the atomic variables

can be expanded in a Fourier series of the modulation frequency 8(j. The atomic

polarization components and the atomic inversion can be written

3



u(t) = U n exp~iSnt) , (4a)

n-

VWt) = V n erp(inSt) ,(4b)

n

and
w(t) = (4c)

Wt = w exp(inzot)
A- = n

The nth harmonic componeL s of the in-phase and in-quadrature dipole moments and of the

atomic inversion are denoted by un, v, and wn, respectively. We substitute Eqs. (4) into the

Bloch equations, Eqs. (1), to obtain a set of recurrence relations between the harmonic

components of the atomnic variables. The ratio of the first harmonic component of the in-

quadrature dipole moment to the zeroth harmonic (time-averaged) component of the

inversion is expressed as a continued fraction

VI (5)
wo  11

W0 B 1 +
1 11
B 2 + Il

B 3 +
3 B 4. ..........

where the single field intensity is

I (KE)2rIr2 (6)

and the coefficients denoted by B, are

=1+ in&T + (AT2) 
(7a)

S2 +inT 2

for odd n, and

B =1 + inwT, (7b)

for even n.

We can solve for the time-averaged component of the atomic inversion, w., in terms of

the continued fraction, and then write the excited state population

211 Rev /w} (8)

1 + 21,Re{u 1 I /w o

4



We are ultimately interested in the absorption of the AM field. The average rate at which a

two-level atom scatters light in the form of resonance fluorescence is proportional to the

time-averaged absorption. The fluorescent emission rate is proportional to the excited

state population. Consequently, for the case of a 100% AM excitation of a two-level atom,

the rate of absorption of energy is proportional to the time-averaged component of the

excited state population.

We plot the results of these calculations in Figs. 1 and 2. In Fig. 1 we plot the time-

averaged excited-state population for a fixed Rabi frequency as a function of the

modulation freqtuency, 8wT . This curve is quite complicated and it shows several

resonances in the absorption spectrum of the fields. To understand these peaks it is helpful

to solve the problem in the absense of damping. In this case one obtains an analytic

solution in which the time-averaged response of the population can be written in terms of

Jo(2.E 1 /8w). When we numerically pick off the position of each peak from Fig. 1, we find

that the peaks occur whenever the factor J 0 (2KEI/8w) is equal to zero. The outermost peaks

correspond to the first zero of J.. The next peaks at smaller values of 8cT 2 correspond to the

second zero of J 0 and are the first subharmonic resonances. In the limit of large arguments,

x, the zeros of J0 (x) become equally spaced versus x. It is in this limit that the resonances

are bestdescribed as subharmonic resorances. In Fig. 2 the time-averaged population of

the excited state is plotted versus the time-averaged dimensionless intensity, 2(KE 1)2T1 T

for a fixed modulation frequency of three atomic linewidths. This is the form of our raw

data. The resonances appear as enhancements in the absorption embedded in the usual

single-field saturation curve. As the intensity is increased from zero we approach the first-

order resonance. The second resonance, occuring at a higher intensity, is the first

subharmonic resonance. The order of the subharmonic resonances increases as we look to

higher dimensionless intensities. These resonances occur only when the modulation-

interaction is strong, meaning the Rabi frequency, KE1, exceeds the natural linewidth of

the transition, and the modulation depth is large, as in the case of 100% AM.
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The dynamic behavior of the atomic variables also reflects the subharmonic behavior

of the 100% AM interaction. In Figs. 3(a)-3(d), we show the phase plots formed by the in-

quadrature atomic polarization and the inversion at each of the first four resonances (on-

resonance excitation is used for the phase plots so that only the in-quadrature polarization

is driven). Each figure depicts the trajectory followed by the atomic variables for a

complete period of the modulation. Fig. 3(a) depicts the period-one behavior which occurs

at the first resonance. Fig. 3(b) shows that a second cycle in the trajectory occurs at the

second resonance, which is the first sub-harmonic resonance. Figs. 3(c) and 3(d) show the

behavior at the third and fourth resonances respectively. We can compare this system to an

anharmonic oscillator being driven every nth cycle of its natural frequency. The oscillator

can be driven effectively by the fundamental frequency or any subharmonic of the

fundamental. This subharmonic driving is effective since the system responds at higher-

harmonics of the driving frequency when the driving force is large enough to induce a

nonlinearity.

EXPERIMENTAL SETUP

The experimental apparatus we used to study the absorption spectrum is shown in

Fig. 4. The absorption is determined by measuring the total fluorescence from a small

portion of the interaction region. We imaged the fluorescence from the interaction region

onto a pinhole placed in front of a photo-multiplier tube. Spatially filtering the

fluorescence signal limits the signal to that from a small region near the center of the laser

beam where the intensity is constant to within 10%. This allows us to study atoms with

equal Rabi frequencies. The detectors were dc-coupled to measure the time-averaged

fluorescence.

Sodium was chosen as the atomic medium because it has a large oscillator strength

and is readily made into a two-level atomic system. To obtain a two-level atomic system we

resonantly excited the 3s to 3p transition with circularly-polarized light. A two-level

system results from the pumping of population into the aligned magnetic sublevels2 3 . The

atomic beam was collimated to provide a divergence angle of 1 milliradian with an
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associated Doppler width of less than 2 MHz (this is 20% of the natural linewidth of the

sodium transition). The atoms were excited by a circularly-poiarized beam whose angular

divergence was less than 1 milliradian (this angular spread accounts for no more than 1

MHz Doppler broadening). The laser field was the output of a frequency stabilized

rhodamine 6G dye laser, whose full-width-frequency jitter was less than 1 MHz. The

angular divergence of the laser and atomic beams together with the frequency jitter of the

laser gave us a total systematic broadening of 4 MHz, or 40% of the natural linewidth. This

systematic linewidth was verified by measuring the full spectral width of the atomic

transition to be 14 MHz (the natural linewidth is 10 MHz).

We produced a 100% AM laser field with a modulation frequency, 8W/2n, of 15MHz,

which is three times the transverse relaxation rate of the sodium D2 line. The modulation

was produced by passing the laser through a high efficiency acousto-optic modulator

(AOM). A portion of the beam was up-shifted by the 30 MHz drive-frequency of the AOM.

The diffraction efficiency was adjusted so that the power diffracted into the first-order

beam was equal to that left in the zeroth-order undiffracted beam. We, then recombined

the two orders to create the bichromatic field. The two beams were aligned with

interferometric precision in order that a strong beat note of 30 MHz was clearly detected by

a photo-diode measuring the far-field intensity. After recombination, the field state can be

described in terms of a carrier, at the mean frequency of the two frequency components,

that is 100% amplitude-modulated at one half the drive frequency of the AOM. Since the

recombination geometry is different for each modulation frequency it was inconvenient for

us to vary the modulation frequency in search of the resonances. Instead, we held the

modulation frequency fixed and varied the Rabi frequency by sweeping the intensity of the

laser. This was done with a set of linear polarizers and an electro-optic cell driven by our

computer.

At each power setting we recorded the incident laser intensity along with the

intensity of the fluorescence emitted by the atoms. Each data point was averaged 100

times over several milliseconds to integrate out any fast intensity fluctuations of the laser
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field. All data was recorded with a 14 bit analog to digital converter on a PDP-11/23

microprocessor. The 40 db dynamic range provided by the digitization is necessary to

match the dynamic range of our data.

EXPERIMENTAL RESULTS

We collected data for the AM field on-resonance and for a detuning of three

linewidths. The modulation frequency was equal to three atomic linewidths for all the data

we present in this paper (8cT2 = 3). In Fig. 5 we plot the fluorescent intensity versus

incident time-averaged intensity for on-resonance excitation. The resonances appear as

bumps on the saturated absorption curve. The solid curve shows a theoretical fit to our

data. A two-level theory is averaged over detuning and modulation frequency to model the

very slight imperfect recombination of the two beams. When the two laser beams exiting

the AOM are not perfectly aligned (see Fig. 4), the atoms see a moving interference pattern.

If this pattern moves along the atomic-beam axis, the spread in atomic velocities causes the

atoms to experience a spread in modulation frequencies.

Since we are mainly interested in the resonances, we can divide our data by a single-

frequency absorption curve to obtain a normalized atomic response to the two-field

excitation. This normalization flattens out the curve so that the resonances may be seen on

a single expanded graph. In Fig. 6 we plot the normalized fluorescent intensity versus the

parameter V'/KE 1T . The parameter V/"KE1 is the root-mean-square (rms) Rabi

frequency. A distinct enhancement in the absorption of the fields occurs when the rms Rabi

frequency is equal to n(28w)), where n is the number of the resonance and 28W is the

frequency difference between the two field modes. We can observe the first order resonance

and the first two subharmonic resonances with resonant excitation. With the fields

detuned by three natural linewidths we have observed up to three subharmonic resonances.

In Fig. 7 we have plotted the fluorescent intensity versus the rms Rabi frequency for

resonant and detuned excitation ( for the detuned case AT2 = 3). The resonances occur at

lower intensities when the modulated field is detuned since the generalized Rabi frequency

is larger for the same amount of incident laser power. We do not have an analytical
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expression for the position of the resonance peaks. However, we find that the empirical

formula
(9)

describes the postion of the resonances quite well for both detuned and resonant excitation.

We can interpret the quantity on the left as the generalized Rabi frequency A resonance

occurs whenever the generalized Rabi frequency is equal to an integer, n, times the

frequency separation, 28G), between the two fields. This formula for the resonances agrees

with weak modulation experiments11 ," .

It is instructive to look at the positions of the resonances for the detuned and resonant

modulated excitations. We used the computer to determine the position of the resonance

peaks for the normalized data. The positions of these peaks for detuned and resonant

excitation are plotted on the same graph in Fig. 8. The position of the nth resonance for the

detuned case appears at a lower intensity than the corresponding resonance for the case of

zero detuning. The solid lines represent the theoretical predictions for the positions of the

resonances according to Eq. (9).

CONCLUSIONS

We have presented both theory and experiment for the absorption of a 100% AM field

by a closed two-level atomic system. The interaction reveals resonances at subharmonics of

the Rabi frequency. We observed the first three resonances with resonant excitation, and

we observed the first four resonances with detuned excitation. For resonant excitation, the

absorption of the AM field is enhanced whenever the ratio 2KE /S& is equal to a zero of the

zeroth order Bessel function. In this paper we have presented an empirical relation for the

occurence of the resonances for both resonant and detuned excitation. The data agrees with

this empirical prediction.

Our data shows the absorption of the bichromatic field is enhanced at the first-order

resonance and at each of the subharmonic resonances. This result differs from that

obtained by Thomann.18 The results of that experiment showed a decrease in the

absorption at each resonance. In that experiment the field modulation index was no larger
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than 0.65 so there was always a significant field component at the carrier frequency. When

the carrier frequency is present it can beat with each of the modulation sidebands to

produce overtones, at harmonics of the modulation frequency, in the atomic response. This

beat frequency is one half the beat frequency arising between the two modulation

sidebands. The harmonic overtones of these two sets of beat notes can destructively

interfere in a three field experiment. This interference causes the absorption to diminish at

each resonance.

We have demonstrated the complicated behavior of a purely bichromatic field

interacting with a closed two-level atomic system. Subharmonic resonances occur due to

the coherent nonlinear interaction of a multi- frequency field with an isolated atomic

resonance. It is exactly this type of nonlinear interaction that determines the competition

or cooperation between cavity modes in a laser gain medium. The same set of subharmonic

resonances occur in a saturated two-level amplifier interacting with a modulated laser

field. This provides a mechanism for multimode instabilities in a homogeneously

broadened laser. Instabilities of this type have been observed.5
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Figure Captions

Fig. 1 The time-averaged excited state population as a function of modulation

frequency, 8GT 2 . The Rabi frequency is held fixed, KEIT 2 = 10, while the

modulation frequency, 8roT 2, is varied to observe the subharmonic resonances.

The detuning is zero, AT 2 = 0.

Fig. 2 The time-averaged excited-state population as a function of intensity. The

modulation frequency is held fixed, 8wT 2 = 3, while the time-averaged

dimensionless intensity, 2(KE,) 2TIT 2', is varied to observe the resonances. The

detuning is zero, AT 2 = 0.

Fig. 3 The trajectories of the atomic inversion and the in-quadrature polarization. We

plot th atomic inversion versus the atomic polarization at the first four

resonances. The modulation frequency for each of the figures is 8WT 2 = 3. In Fig.

3(a) the Rabi frequency corresponds to the first resonance. The next three

figures show the behavior at the first three subharmonic resonances (b) n = 2, (c)

n = 3, and (d) n = 4. The detuning is zero, AT 2 = 0.

Fig. 4 The experimental apparatus. The diagram is labeled with the following

notation: SDL - stabilized dye laser; AOM - acousto-optic modulator; M -

mirrors; BS - beam splitter; LP - linear polarizer; EOM - eletro-optic modulator;

V4 - quarter-wave plate; Na - sodium oven; AB - atomic beam; PH - pin-hole;

PMT - photo-multiplier tube; PD - photo-diode; PDP-11/23- micro-computer.
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Fig. 5 The time-averaged fluorescent intensity versus time-averaged incident

intensity. The raw data is plotted with dots and the solid curve represents a best

theoretical fit. The modulation frequency is fixed, ScjT 2 = 3, and the detuning is

zero, AT 2 = 0.

Fig. 6 The normalized time-averaged fluorescent intensity versus rms Rabi frequency

for resonant excitation. The fluorescence data from Fig. 5 was normalized by a

single field saturation curve to flatten out the resonant peaks. The Rabi

resonance and the fir-st two subharmonic resonances are shown.

Fig. 7 Normalized time-averaged fluorescent intensity versus rms Rabi frequency for

resonant and detuned excitation. The dotted curve represents the data for the

resonant case, AT 2 = 0. The dashed line represents data for the detuned case,

AT 2 = 3. The resonant peaks occur at lower Rabi frequencies for the detuned

case. The modulation frequency is 8&T 2 = 3.

Fig. 8 The position of the subharmonic resonances versus resonance number for

resonant and detuned excitation. The rms Rabi frequency, N72KET 2,

corresponding to the nth resonance is plotted versus n. The circles represent the

data for resonant excitation, AT2 =0. The squares represent the data for

detuned excitation, AT 2 -3. The solid line represents the empirical expression

in Eq. (9) for resonant excitation AT2 = 0. The dashed line represents Eq. (9) for

AT2 = Sca. The modulation frequency is ScjT 2 = 3.
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Abstract

We consider the interaction of two 100% amplitude-modulated fields

with a two-level system. The analysis includes a discussion of the

stability of an amplitude-modulated laser field to the growth of

subharrnonic amplitude-modulated fields.
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I. Introduction

Recently, a great deal of interest has focused on instabilities in laser systems 1 2.

Motivation of this interest is provided by a desire to understand the complicated

dynamics of nonlinear systems. Optical systems provide a convenientjground for

rigorously examining these dynamics. The laser is a specific example of a rigorously

describable optical system containing the nonlinear interaction of light with matter.

Subharmonic instabilities have been observed in a number of different lasers3 .

Subharmonic instabilities have become especially interesting, since a sequence of

period doublings has been identified as a possible route to chaos.

Instabilities in lasers have existed since the first demonstration of a laser by

Maiman 6 . Lasers have operated in a number of states since that first demonstration.

The complications introduced by pump fluctuations, spatial hole b,-ning,

inhomogeneous broadening, etc., have enhanced this variety of available states. The

continuous-wave ring dye laser is a homogeneously broadened laser that contains

few of these additional complications, yet still displays a rich variety of operational

states. Hillman et at.5 observed a continuous-wave dye laser, initially operating at a

single frequency, go unstable and beg-in oscillating at two frequencies. As the pump

power was increased, the two components of the laser spectrum separated with a

linear dependence on the electric fleld strength of the laser. When the separation of

the spectral components reached -80A, the laser encountered another instability

threshold. The two-frequency state then collapsed to another two-frequency state of

smaller frequency separation. On increasing the pump power still further, this new

two-frequency state behaved similarly to the initial two-frequency state.

The physical mechanism, for these new states of dye laser operation, is not well

understood. There have been a number of theoretical treatments of a multimode

laser 7 1 1 . Unfortunately, none of them has provided an explanation for all the

features of the experimental results. The most successful theoretical model9 " takes
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the molecular structure of the laser-dye molecule into account. However, the actual

physical mechanism responsible for the instability remains to be seen.

In an attempt to develop physical intuition for the problem of a nonlinear

system being driven by a two-component field, we previously examined.Lhe gain for

such a field driving a two-level atom8 . These calculations showed that the gain of the

two-component field displays resonances when the frequency separation of the two

fields is equal to the Rabi frequency or a subharmonic of the Rabi frequency.

In this paper we consider the stability of a bichromatic laser field. Since a

general self-consistent solution to the multimode laser equations is not available,

the stability analysis must be carried out in some other manner. The equations

could be numerically integrated; however, the parameter space is too large for such a

solution to provide intuition. An alternative is to calculate the atomic response to

the laser field and examine the gain experienced by a probe field. When the probe-

field gain exceeds the laser-field gain, an instability will occur. In this paper we will

discuss the stability of a bichromatic field to the growth of a bichromatic probe field

using just such an alternative.

The analytic description of the interaction of four field components wi h a

resonant medium is a very cumbersome task. The nonlinear response of the medium

produces combination tones of the field components in the polarization of the

medium. When the frequencies of the combination tones are incommensurate with

one another, the medium can exhibit a broadband spectral response 2 . The analytic

description of such a problem becomes extremely difficult. However, if the

frequencies of the combination tones are commensurate, one can employ Floquet's

theorem' 3 to analytically study the problem. Neglecting dispersion in the cavity, the

mode frequencies are all commensurate with one another. The mode frequencies are

integer multiples of the inverse of the cavity round-trip time. Therefore, the

simplest physical situation is one in which the field frequencies are commensurate
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with each other. The most elementary four-component field is one in which each

field component creates a degenerate beat frequency with the nearest other field

component. We will examine such a field and further specify the problem by

considering only subharmonic probe fields. These probe fields are-especially

interesting as they give us insight into possible physical mechanisms for

subharmonic instabilities. This same analysis could be carried out for other

subharmonic fields, such as the +-subharmonic observed in period doubling

sequences. The techniques used in the analysis of such a field would be identical,

however the dimension of the matrices used in the solution would be larger. The

stability of bichromatic fields to harmonic bichromatic probe fields will be the

subject of a future paper 4 . For simplicity, the fields are symmetrically placed about

the atomic resonance frequency; the extension of the problem to include asymmetric

field states is straight forward. Figure 1 shows the spectrum of this symmetric field.

2. Outline of the calculation

The general expression for a four-component field is better understood by first

analyzing the single 100% amplitude-modulated (AM) field. The expression for such

a field is written as a two component field or a single component with a sinusoidal

amplitude.

E,(t) = 2 (cos(cw + 8co)t + cos(w - 8c)t) (I a)

= 4 cos8cat coswt. (lb)

The amplitude of each frequency component is equal to 2.

The use of complex phasor diagrams to describe the phase relationships

between many-component fields can be very helpful. The complex phasor for a 100%

AM field is a vector that oscillates along a line through the origin. The amplitude of

the field deterirines the length of the vector; the modulation frequency determines

the vector's rate of oscillation. In defining the field above, we chose an arbitrary

phase factor so the complex phasor lies along the real axis of the complex plane.
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There are two independent subharmonic probe fields at each modulation

frequency. When the field is symmetric about the atomic resonance, as in our case,

the independent probe fields are in-phase or in-quadrature to the strong field; these

phasors will be along the real or imaginary axes respectively. The expression for the

100% AM perturbative fields will be similar to the expression above; however, in

general there will be a phase difference between the oscillations of the perturbative

fields and the strong field. With these considerations in mind, we choose the

perturbation to the 100% AM field for our calculations to be of the form

8E(t) = 4 85'cos(j-8cot +.0') coscwt- 4 8 "sin(-8(it + 0O) sinw)t. (2)

In Eq. (2), the amplitude of the in-phase (iL-q uadrature) probe field is 8' (6 '). The

phase between the oscillations of the strong field and the in-phase (in-quadrature)

subhamonic probe field is ' (E"). The total field is the sum of Eq. (1) and Eq. (2).

The optical Bloch equations model the response of a two-level atom coherently

driven by an optical field' 5 . In a reference frame rotating at the frequency, o, the

optical Bloch equations are

= -Q"(t) w - u/'T2 , (na)

44 = Q'(t) w - v/T 2 , (3b)

= f (t) u - £l'(t) v - (w - w, )/T , (3c)

in which

fl'(t) - 2K 18k' cos(L8(jt + 0') + k cos8Gct] , (4a)

Q'(t) = 2 K 8," sin(-18wot + 0") , (4b)

and K = 2d/h. The dipole-moment matrix element between the two levels is d and A

is Planck's constant. The slowly varying amplitudes of the in-phase (in-quadrature)

part of the dipole moment is u (v). The inversion of the two-level system is w; weq is

the value the inversion decays tG in the absence of a coherent field. The relaxation
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times of the inversion and polarization are T1 and T2 , respectively. The field

components that are in-phase (in-quadrature) to the rotating frame are i'(t) (a" (t)).

Floquet's theorem tells us, in the stationary state the atomic variables will

respond at harmonics of the driving field modulation frequency. -So, in the

stationary state we express the atomic variables as Fourier series in the modulation

frequency.

Us U n exp(*in~w) ,v = I u CZp(Jin&wt) , I = n wxp(Jin~wt) (5)
R = -- n= R - 0 0 n=or-, -

This assumption leads to the following recurrence relations

(1 + -JinwT2 ) un = (8n," w.1 + 58!Q* wn+ )T2 , (6a)

(1 + -in8T 2) v. = (8Ql' w., + 5Q'* W.+1 + Q' w 3 + Q' wn+ 3 )T2 , (6b)

U JncT)W e n0- (U1, u M.1 + 6542':* u 8Ql' " " +SO'* vM+(1 +4inS~T 1 )w = w 8 ,o -(€'u +Z u,,+5l'v,,- ,,+(V

+ C2 VD. 3 + C' v+ 3 )T1 , (6c)

in which

Q = X. , (7a)

8Q'= K8 ' exp(ie') , (7b)

M = iK88'" exp(i6") , (7 c)

and the asterisk denotes a complex conjugate. The Kronecker delta function is n,.

We solve for u and v in the first two recurrence relations and eliminate them

from the third relation. The third relation then becomes a function of the Fourier

components of w alone.

a.w,. 6 + bawn.4 +ca w. 2 + d w + e w+ 2 + fw-+4 + gnw 0 +6= We 8no  (8)

in which

a n = Ln.3 fQ'2TIT 2 ,(9a)

bLA = (LZ - + L.-) Q'8Q'T 1 T2 , (9b)

ca = (Ln.l (8Q2"2 + BQ' ) + (L +I + Ln.3) ' 8Q'*)TIT 2 , (9c)
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d= = (1 + -jin8c T + (L, I + L..l) (ISQ1 2 + (8 '12) TIT2

+ (Ltk. 3 + L..3) a' 2 TT 2) , (9d)

e. = (Ln 1 (8.v.2 + 8Q,*2) + (L0 1 + L.3) ,8 WS) T1T2  (9e)

fn (L. 1 + L+ 3 ) ,l'8* T1T 2  
(9f)

g,, L.+3 C1' 2 TIT 2 ' (9g)

and

Ln = (1 + -jin&aT2)l' (9h)

This recurrence relation, Eq. (8), can be rewritten as a three-term recurrence

relation; the terms are products of matrixes and vectors.

P w 2 + Q.W ,, W 2 = D, (10)

in which

p- a3 n ba Q. =  %. dan e3,

0 a3n + 2b 3 n+ 2 C3 n+ 2 d3n+

93.2 0 1
R n f3n g3n 0

e3n+2 f3n=2 I3n+(1

D n = w iq in, an W a W 3n J I II I
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We solve this three-term recurrence relation using matrix continued fractions 16.

The solution is given in Appendix A. Now that we have determined the atomic

response, we calculate the gain experienced by the probe fields.

The time-averaged product of the probe field and the time derivative of the

polarization gives the gain experienced by the probe field. The gain of the in-phase

subharmonic probe field is proportional to the real part of the fir.-t harmonic of v.

d KE' / dz = a Re{v, exp(-iO')} / 2KT 2  (12a)

The gain of the in-quadrature subharmonic probe field is proportional to the

imaginary part of the first harmonic of u.

d 8'" /dz = a Im{u 1exp(-iO")} / 2KT 2  (12b)

3. Discussion of results

In Fig. 2 we plot the in-phase subharmonic probe-field gain as a function of

modulation frequency for various strong-field intensities. At low intensities the

probe-field gain is a Lorentzian in modulation frequency with a width of lT 2. As the

intensity of the strong field is increased, the gain curve develops a dip near zero

modulation frequency. The dip has a width of 1/T1. The presence of this dip implies

that the probe field will experience the greatest gain for a nonzero modulation

frequency. In Fig. 3 we plot the in-quadrature subharmonic probe-field gain as a

function of modulation frequency for various strong-field intensities. Again we see

that at low intensities the probe-field gain is a Lorentzian in modulation frequency

with a width of l/T 2. As the strong-field intensity is increased, the gain curve

develops an anti-dip near zero modulation frequency.

The calculations have shown both quadratures of the probe-field gain to be

independent of 0' and 0". In Appendix B w show analytically that the in-

quadrature suhharmonic probe-field gain is independent of 0". The independence of

subharrnonic gain from the phase difference between the oscillations of the probe

field and the oscillations of the strong field, implies that the subharmonic component
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of the polarization is directly proportional to the subharmonic field. In contrast, it

can be shown that the harmonic probe-field gain exhibits a strong dependence on the

phase difference between the siung-field oscillations and the harmcnic Prbe-fie d

oscillations"'. Also, if the amplitude of the probe fields is increased, s. that their

interaction can no longer be considered only to first order, the gain of the

subharmonic field becomes dependent on 8. The independence of the gain from the

phase implies the instabilities predicted may be symmetry-breaking instabilities.

The phase of the light field for a laser at the first laser threshold displays similar

behavior''.

In Figs. 4 and 5 we show, respectively, the in-phase and in-quadrature

subharmonic probe-field gains for larger strong-field intensities. In both cases,

additional structure begins to develop about the initial feature. The additional

maxima and minima seem to move out with a parabolic dependence on intensity.

In Figs. 6 and 7 we plot the peak positions of the subharmonic gain curves as a

function of modulation frequency and amplitude of the strong field. Here we can

clearly see the peaks move out to higher frequencies linearly as the electric field

increases. This linear dependence suggests a connection between these resonances

and the Rabi frequency. In contrast to the two-field problem, where the position of

the resonances are found to be independent of the damping rates', the position of the

subharmonic probe-field resonances do display a dependence on damping. The

maxima occuring at the largest modulation frequency varies most drastically with

variation of the ratio between T, and T2. The subsequent peaks vary less and less

sensitively. The physical mechanism responsible for this behavior is not well

understood. Some of the features, however, are similar in behavior to that seen in

multiphoton absorption"8 . Subharmonic resonances such as these are also present in

the two-frequency problem and have also been predicted in other multichromatic

analyses".
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In Fig. 8 we show the strong-field gain as a function of modulation frequency

for a fixed strong-field amplitude. In reference 8 the maxima in the strong-field gain

curve were found to occur where the zeroth order Bessel function, Jo(2xE / 8w) is

equal to zero. For large Rabi frequencies, K , and small modulation frequencies, 8W,

the zeroes of the Bessel function become equally spaced. It is in these regimes that

the resonances become subharmonics. In Fig. 9 we plot the in-phase, in-quadrature,

and strong-field gains as a function of modulation frequency for the same parameters

as Fig. 8. At this intensity the in-quadrature probe-field gain is always positive; it

exceeds the strong-field gain for all modulation frequencies, except in the vicinity of

the absolute maxima of the strong-field gain curve. The in-phase probe-field gain

takes on both positive and negative values as a function of modulation frequency. It

can also be noted that the oscillations in modulation frequency of the two

subharmonic gain curves are 1800 out of phase with the oscillations in modulation

frequency of the strong-field gain. It is important to remember, however, the

frequency separation of the probe fields is one third the modulation frequency, Sw.

This means the presence of a frequency-dependent loss influences the two curves

differently. For instance, a frequency-dependent loss that is larger for larger

frequencies, reduces the strong-field curve more than the probe-field curve. This

reduction makes the probe-field gain larger than the strong-field gain. If the strong

field is the field in a laser, this reduction allows the probe field sufficient gain to

overcome losses and begin oscillation. The severity of the frequency-dependent loss

determines the point at which the instability will occur. The experiments of Hillman

et al.6 and Stroud et al.'9 confirm these conclusions.

In Fig. 10 and Fig. 11 we plot a series of in-phase and in-quadrature

subharmonic probe-field gain curves for fixed strong-field amplitude as a function of

modulation frequency and three different ratios of damping times. The ratios chosen

are indicative of collisional dephasing (T2 4 Tj), strong collisions (T2 = T), and



radiative broadening (T2 = 2 T,). These plots indicate the shape of the in-phase gain

curve is not a strong function of the ratio of damping times. However, as noted

before, the positions of the maxima do show a dependence on the ratio between T i

and T 2 . The in-quadrature subharmonic probe-field gain does indicate a4ependence

on the ratio of T i and T2 for modulation frequencies less than 1/T 2. However, for

modulation frequencies greater than the linewidth, 1/T2 , the curves are quite similar

in form and only show a weak dependence on the ratio ofT, to T 2.

Conclusions

We have calculated the atomic response to a pair of 100% AM fields. We used

this solution to calculate the gain seen by a 100% AM subharmonic probe field. The

subharmonic probe field sees a Lorent.:ian lineshape in modulation frequency for the

limit of small amplitude. As the strong-field amplitude is increased it modifies the

lineshape experienced by the subharmonic probe field. The lineshape contains a

primary resonance and subharmonic resonances of this primary resonance. The

position of the resonances varies linearly with the Rabi frequency of the strong field.

The location of the resonances also depends on the ratio of the inversion decay rate to

the dipole decay rate.

We have also observed the gain of the subharmonic probe field to be

independent of the phase between the oscillations of the strong field and the

oscillations of the subharmonic probe field. This independence of phase implies the

subharmonic response of the atom is directly proportional to the subharmonic field.

It also predicts the instabilities will be independent of this phase difference.

The calculations also reveal that the 100% AM strong field is stable to the

growth of subharmonic fields if there are no frequency-dependent loss mechanisms.

However, if frequency-dependent loss mechanisms are present, we predict the 100r

AM field will go unstable. The point at which the field goes unstable depends on the



severity of the frequency-dependent loss. This conclusion agrees well with observed

instabilities in cw dye lasers5'1 9 .
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Appendix A

In this appendix we outline the method for calculating the gain of the subharmonic

probe fields.

The larger harmonic components of w must become less signifloant if the

Fourier series in Eq. (5) are to converge and the rotating-wave approximation is to

remain valid. Therefore, we assume the harmonic components of the inversion, w.,

are negligible for n>N. With this assumption, the recurrence relation, Eq. (10), for

n = N can be written as

PNWN 2 + QWN= 0, (Al)

which implies

WN = "QNI PN WN2 • (A2)

The recurrence relation, Eq. (10), for n = N-2 can now be written as

PN.2 WN.4 + (QN.2 - RN-2 QN PN) WN. 2 = 0 , (A3)

which implies

WN-2 M "(QN-2 - RN-2 QN'I PN) I PN.2 WN.4 (A4)

We continue in such a fashion, defining the larger index Fourier amplitudes in terms

of the lower index Fou *er amplitudes, until we reach the relation for n = 2. This

relation has the following form.

W 2 = -(Q2 - R 2 (Q 4 - R4 (...(QN.2 - RN.2QN-'PN )-' PN.2) ! PN-4 '...)- P)-I p 4).I P 2 Wo, (A5)

or more simply

W2 = MW 0 , (A6)

where M is the matrix continued fraction, with elements mu. This expression, Eq.

(A6), relates the harmonic components w 4, w6 , and w8 to the harmonic components

w0 w2, and w 2. Strictly speaking, the matrix, M, is a function of N. However, N is

chosen sufficiently large so that M becomes independent of N to the desired accuracy

of the calculation. This is our criterion of convergence. Since the inversion, w, is a

real quantity, the Fourier components obey the relation



w = w*. (A7)

We now consider Eq. (8) for the cases n = -4, -2, 0, 2, and 4. Using Eqs. (A6) and

(A) we write these five relations in matrix form as

SW=W o  (A8)

Where the vectors W and Wo are

" 0

w 4 S

0

W= wo  and Wo wq (A9)

w2
W2 0

-W 4 I "

And the matrix S has elements s, where

sil = d 4 + a.4m 33 * + b. 4 m 23 * + c. 4 MI3

S12 = e.4 + a-4 M 3 2 + b4 m22 + C.4 m 12 *,

+13 =- f 4 +n a4 m31* + b4m21* + c Ml'

S4 =- g-4 '

15 =" 0,

S2 1 = c. 2 +a. 2 m 23" + b.2 m 3

S2 2 = d.2 + a.2 n 2 2* + b 2 m 12 ,

S23 = e. 2 + a.2 m 2I* + b.2 mi*I,

824 .2=

S25 = g-2'

s31 = b o + a 0 m 13*,

S32 = C0 + a0 m 12 *,

s 33 = do + a, m,,* + go mil (A10)
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834 =32

835 =31*

841 a2

S4 2 =b 2 , -

s= c2 + f2 M 11 + g2 M2 1 '

84 d2 + f2 M 12 + g2 M 22,

s4 = e2 + f2M 13 + g2iM23 ,

551 =0,

52= a 4 ,

s5 b4 + e 4 InI + f4 M 21 + g4 M3 1 ,

s 5 4 c4 + e, m12 + f4 M22 + g4 M32 , and

S55 =d 4 + e4 i 13 + f4im2 3 
+ g 4m 3

Eq'iation (A8) represents a system of five linear equations with five unknowns. The

solution gives us expressions for wo, w 2, w., and their complex conjugates. We can

use these expressions to find the other Fourier components of w. From Eq. (6a) and

Eq. (6b) we can then determine the Fourier components of u and v that determine the

gain.

Appendix B

In this appendix we show that the gain of the in-quadrature subharmonic probe field

is independent of the phase difference, 0', between the oscillations of the

subharmonic probe field and the strong 100% AM field.

The solution for the atomic response to a single resonant 100% AM field has

been found in reference 8. If we linearize the Bloch equations about this solution, the

equation of motion for the perturbation to the slowly varying amplitude of the in-

phase dipole moment becomes

U = -8c'(t) wAM' 8U/l 2 . (BI)
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Where 8u is the perturbation to the slowly varying amplitude of the in-phase dipole

moment. The perturbative field in-quadrature to the 100% AM field is 81"(t). The

stationary solution for the inversion to the Bloch equations driven by a resonant

100% AM field is WAM, Recall wAM can be written as 0
(B2)

WA'= w ep(in'it).
RM -0

If 8C12(t) = 282" sin(18ct + 0") we can employ Floquet's theorem and write the

stationary solution to Eq. (BI) as
(B3)

8u BU exp(*inSt).

This assumption leads to the following recurrence relation

(1 + iin8cjT2) 8u. = is82T 2 (w(..,, ep(i0")- w(.,, ezp(-iO")) . (B4)

The gain of the in-quadrature subharmonic probe field is proportional to

8ulexp(-iO"). From Eq. (B4) we find

8u, exp(-i0") = i8"T 2 wo /(1 + ji&eT 2) (B5)

The right hand side of Eq. (B5) is independent of 8"; this implies the in-quadrature

subharmonic probe-field gain is independent of the phase difference between the

oscillations of the in-quadrature probe field and the oscillations of the strong field.
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Figure Captions

Figure 1. The applied field spectrum. We plot the spectrum of the field used for the
calculation as vertical arrows. The field is assumed to be symmetrically

placed about the atomic resonance, catom* The atomic resonance is

graphically displayed as a Lorentzian lineshape. The field irmade up of
frequency components at ca - 38w, w - 8c, (+8G, and ca+36a. The

components at ca + 38c and ca - 38 are referred to as the strong field in

the text.

Figure 2. In-phase subharmonic probe-field gain. We plot the in-phase

subharmonic probe-field gain as a function of 8w, for various values of the

strong-field intensity. A dip in the center of the gain curve develops at
low intensity. This means that the maximum gain occurs for nonzero

modulation frequencies. The time-averaged strong-field intensity, 1 =
2(xk1 )2T T2 = 0, 1, 11, 2, 21, 3j, 4, 41, 5, 6. The inversion decay time T,

= 0 T2.

Figure 3. In-quadrature subharmonic probe-field gain. We plot the in-quadrature

subharmonic probe-field gain as a function of Sa, for various values of the

strong-field intensity. In contrast to the in-phase subharmonic probe-
field gain, the in-quadrature subharmonic probe-field gain develops an

antidip near the center of the gain curve. The intensities and decay times

are the same as in Fig. 2.

Figure 4. In-phase subharmonic probe-field gain. We plot the in-phase

subharmonic probe-field gain as a function of 8c, for larger values of the

strong-field intensity. Structure develops within the dip that formed at
low intensity. The additional structure appears at subharmonics of the

main resonance. The time-averaged strong-field intensity, I, =
2(xik) 2TIT2 = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The inversion decay

time T, = 10 T2.
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Figure 5. In-quadrature subharmonic probe-field gain. We plot the in-quadrature

subharmonic probe-field gain as a function of 8w, for larger values of the

strong-field intensity. Additional structure appears outside the antidip

formed at low intensity. These peaks also appear at subliarmonics of the

main resonance. The time-averaged strong-fleid intenrsity, I, =

2(Kkl)2rTT2 = i0, 0, 30, 40, 50, 60, 70, 80, 90, 100. The inversion decay
time TI = 10 T2.

Figure 6. Peak positions of the in-phase subharmonic probe-field gain. We plot the

peak positions of the in-phase subharmonic probe-field gain as a function

of Rabi frequency, xK,, and modulation frequency, 8co. The position of the

resonances in-modulation frequency varies linearly with the strong-field

Rabi frequency. The inversion decay time T, = 10 T2 .

Figure 7. Peak postions of the in-quadrature subharmonic probe-field gain. We plot

the peak positions of the in-quadrature subharmonic probe-field gain as a
function of Rabi frequency, Kik, and modulation frequency, 8j. The

position in modulation frequency of the resonances of the in-quadrature

subharmonic probe-field gain also vary linearly with strong-field Rabi

frequency. The slopes of the lines are equal to the slopes of the lines in

Fig. 6. The decay times are the same as in Fig. 6.

Figure 8. Strong-field gain curve. We plot the strong-ield gain as a functi= of

modulation frequency, 8w. The maxima occur at the zeroes of the zeroth-

order Bessel function, J0 (2xkE / 8). The Rabi frequency of the strong field
is 4, = 5/T 2 . The inversion decay time T, = 10 T 2.

Figure 9. The gain curve of the three pairs of fields. We plot the (a) strong-field

gain, (b) in-phase subharmonic probe-field gain and (c) in-quadrature

subharmonic probe-field gain as a function of modulation frequency, 8W
for the same parameters as Fig. 8. The absolute maxima of the strong-

field gain curve exceeds the subharmonic probe field gains. At that

modulation fequency the strong-field will be stable to the growii of

subharmonic probe fields.
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Figure 10. The influence of damping on the in-phase subharmonic probe-field gain.
We plot the in-phase subharmonic probe-field gain as a function of

modulation frequency for three different ratios of T1 to T2 . The Rabi
frequency of the strong field, Kkj = 3/T 2. The inversion decay times for

the three curves are (a) T i = JT 2 , (b) T, = T2 , and (c) T, = oi'.

Figure 11. The influence of damping on the in-quadrature subharmonic probe-field

gain. We plot the in-quadrature subharmonic probe-field gain as a
function of modulation frequency for three different ratios ofT i to T2. The
Rabi frequency of the strong field, k - 3T 2 . The inversion decay times
for the three curves are (a) T, = IT 2 , (b) T = T2 , and (c) T, = 1OT 2.
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NEEDS FOR BROADBAND MATERIALS AND SYSTEMS

* Broadband emitters in the 1 micron band for either flashlamp or diode-
array pumping.

0 Broadband absorber in the 800 nm region to match diode-array emission,
with a single or broadband emissions in the 1 micron region.

0 Non-linear materials to provide second and third harmonic generators,
and OPO materials for the visible, the near IR, the mid IR and the far IR, at
room temperature.

Broadband emitters (tunable materials) in the one-micron band based
upon the Tunabe-Sugano crystal field dependence of the transition metal
energy level system.

Example of Cr3 + (a d3 electron system) in sapphire, alexandrite.

These last two examples are not suitable because they lase in the wrong
band, (around 750nm) and their lasing transition lifetimes are too short,
(order of 10 microsec or less).

Ti 3 - offers a possibility, with its d'electronic state, to provide a system
with little or no deleterious excited staff absorption.

These are phonon terminated laser transition which give rise to the
tunability at the desired wavelengths.
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LIST OF EQUIPMENT AVAILABLE

" CW dye laser system including a 20 W Argon laser and a stabilized ring dye
laser (Coherent)

" Various ancillary measuring equipment such as: lock-in amplifiers, box-car

integrators, high-speed storage oscilloscope

" Various computers and peripherals

" Optical light chopper

* X-ray fluorescence spectrometer (Kevex)

* X-ray generator (Philips) for diffraction analysis

" Visible and near IR interferometer (Zygo)

* Pulsed double-beam spectrofluorometer (Spex) with detectors both in the
visible and near IR

* Streak camera and monochromator (Hamamatbu) with various ancillary
components

" Vacuum pumping system (Baltzers)

* Single-crystal x-ray diffractometer (Nicolet)

* Fume hood

* Pulsed Nd dye-laser system: 1 Joule pump, doubles and triples converters

" Various Newport optical tables with pneumatic support

* Various He-Ne lasers

" Various imaging viewers ramping from S1 photocathode to F.R density

" Low-temperature de (down to 100K
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V4+ in Corundum: Crystal Growth and Spectroscopy

H. Verdun, U. Brauch, G. de la Fuente,
L. Thomas and E. Behrens

Fibertek, Inc.
510-A Herndon Parkway
Herndon, VA 22070

T. Allik and Susan Stewart
Science Applications International Corporation

1710 Goodridge Drive
McLean, VA 22102

A. Pinto and W. Hovis
U.S. Army Night Vision & Electro-Optics Center

Fort Belvoir, VA 22060

Transition, metal ions with the dl or d9 electronic

configuration, such as Ti3+, V4+ and Cu2+, are of particular

interest for tunable solid state lasers. In these ions, the

existence of basically only one high-lying excited state

determines the absence of internal transitions that could

produce excited state absorption. Ti3+ in corundum is an

example of a successful system. V4+ in the same host looks
also very promising.1

In oxide hosts, vanadium can exist in a number of ionic

states ranging from V2+ to V5+ . V3+ is by far the most stable

ionic state of vanadium and, because of this, it is difficult

to obtain significant concentrations of V4+ in this host. V4+

has been found to be present in small concentrations in

corundum crystals grown by the Verneuil method. Annealing

under oxygen produces the conversion of some V3+ into V4+.2

Gamma radiation is also effective for converting V3+ into V2+

and V4+.3  Codoping with magnesium for charge compensation

could have the effect of increasing even further the ratio of
V4+ to V3+ in the as grown crystals. 1



Crystals of vanadium-doped corundum, codoped with

magnesium, were grown using the laser-heated pedestal growth

(LHPG) method.5 A 250 W CO2 laser allowed us to grow crystals

up to 3.5 mm in diameter. The LHPG method is an ideal tool for

the study of the effects of growth atmosphere on the ionic

valence of polyvalent dopants, such as vanadium, since it is

free of the constraints imposed by the crucible material that

limits the range of the oxygen fugacity that is tolerable in

the growth atmosphere. The atmospheres used ranged from inert

(low oxygen fugacity) to strongly oxidizing (about 47% oxygen

in argon). An atmosphere with 18% oxygen gave the largest

ratio of V4+ to V3+  in our crystals, as judged from the

absorption spectrum, when the feed rods were prepared starting

with an equimolar amount of magnesium and vanadium. With

higher Mg/V ratios, the optimum was found to be at lower

oxygen concentrations (at about 8% of oxygen for feed rods

prepared with a starting composition containing twice as many

moles of magnesium as vanadium). The final composition of the

crystals could not be determined accurately with the

analytical method available in our laboratory (x-ray

fluorescence). The vanadium concentration in the crystals is

certainly much lower than the initial concentration in the

powder mixture as a significant amount of vanadium was lost

during the sintering process used in the preparation of the

feed rods. Further losses took place during the growth of the

crystals.

The absorption, fluorescence and excitation spectra for

sample J50 (size: 1.4 mm x 1.6 mm x 7.6 mm) are shown in

Figure 1. These spectra were obtained at room temperature using

unpolarized light and unoriented crystals. Their main features

coincide with those reported in the literature. 1-4 The orange

emission of V4+ in corundum extends from 520 nm to 800 nm

peaking at about 640 nm. The position of the absorption bands

can be inferred from the absorption and excitation spectra.

The two humps peaking at 425 nm and 485 nm can be identified



as related to the V4+ intrinsic absorption, which corresponds
to the 2T2g-2Eg transition. The double peak characteristic is
due to the dynamic Jahn-Teller effect acting on the 2Eg level
(see Ref. 4 and references therein). The features with maxima
at 250 rnm and 320 nm are possibly due to charge transfer
processes. The absorption spectrum of sample #37 (size: 2.0 mm
x 2.5 mm x 12.1 mm), which was doped only with vanadium and
grown in argon, is shown for comparison. This sample contains
mostly V3+ which has, in the visible, two strong absorption
bands with maxima at 400 nm and 570 nm. From the relative
strength of the absorption bands present in sample #50 it can
be concluded that most of the vanadium ions in this sample are
in the 4+ valence state.

The fluorescence lifetime versus temperature was also
measured. The results are shown in Figure 1-d. At room
temperature, the fluorescence lifetime is 1.2 ps. Thermal
quenching becomes important above room temperature. From these
measurements, and the width and position of the emission
spectrum, the resultant value for the stimulated emission
cross section is: ase 5.2 10-19 cm2 .
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Abstract

Two oxide perovskites, EuAlO 3 and GdAIO 3 , doped with

titanium, have been grown by the laser-heated pedestal

growth method. The crystal structure of EuAlO3 is found to

be different than that reported by other workers. The

absorption spectra of EuAlO 3 :Ti and the lack of fluorescence

from this material indicate that the titanium enters the

lattice as Ti 4 + . On the other hand, the spectra of

GdAlO 3 :Ti are attributable to Ti
3+ . The difference between

EuAlO 3 and GdAIO 3 can be attributed to the difference in

third ionization potentials between europium and gadolinium.

The spectra of GdAlO3:Ti indicate that it has potential as a

tunable laser material.
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I. Introduction

The trivalent titanium ion placed in an octahedral

field is very promising for tunable solid state laser

applications due to its strong, broad 2 e -2t2g emission

band. The fluorescence can lie in the long wavelength

visible range or the near infrared, depending on the crystal

field. Its [Ar]3d1 configuration permits no

intraconfigurational excited state absorption transitions,

which is a significant problem in some other solid state

systems. 1,2 Sapphire doped with Ti 3  has proven to be a

successful tunable laser material.
3 ,4

There is significant interest to investigate Ti3  in

other hosts, in which laser action may occur in spectral

regions other than that of Ti3+ in sapphire, and in which

crystal growth and mechanical and thermal properties may be

optimized for laser applications. The oxide perovskites,

wilh general chemical formula ABO3 , contain a large A ion

occupying a twelvefold coordination site and a smaller B ion

in the sixfold (octahedral) site. In these materials, small

transition metals tend to enter the B site. 5 Perovskites

form a promising class of laser hosts since no tetrahedrally

coordinated cation sites exist whose lower crystal field

could give unwanted absorption at the sixfold coordinated

ions' emission wavelength.
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The work reported here is pait of a systematic study of

the properties of Ti 3  in perovskite and other hosts grown

by the laser-heated pedestal (LHP) growth method. 6 This

method permits the rapid growth of single crystals of a wide

range of compounds so that more extensive studies of host

dependent optical properties can be undertaken than by

Czochralski or Bridgman techniques. In this paper, the

optical properties of EuAlO 3 :Ti and GdAlO 3 :Ti are reported.

Section II reviews the pedestal growth technique and the

crystal structure of EuAI0 3 , and Section III presents the

optical properties of both materials. Interpretation of the

data is discussed in Section IV, with concluding remarks

following in Section V.

II. Crystal Growth and Properties

The crystals for this study were grown by the LHP

growth method using a 250-watt, CO, laser. Sintered ceramic

compacts were obtained from starting stoichiometric amounts

of A1 203 (99.999%,Cerac), Gd203(99.999%,Cerac),

Eu203(99.995%,Cerac), and Ti 203 (99.8%,Cerac) powders. The

starting powdered components were milled in acetone for ca.

30 minutes inside a sintered corundum jar ball mill

(Brinkman mixer mill model MM2), and subsequently dried in

an oven. The dried powder was then placed into a stainless

steel die assembly (28 mm diameter) and a ccmpact was formed
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at a force of 14 tons during a period of 30 minutes. The

powder compact was then sintered for 12 hours at 11000C

(EuAIO 3 ) or at 15000C (GdA1O3 ) in air. The hard, sintered

compact was cut into rectangular feed ids (of size ca. 2.5

x 2.5 x 26 mm3 ) and mounted cn a graphite holder fitted into

the bottom chuck of the LHP growth apparatus. A platinum

wire was attached to the top chuck of the apparatus and used

as a primer to initiate the nucleation process. The LHP

apparatus is comprised of a CW, 250-watt, CO2 laser adapted

to a growth chamber capable of handling oxidizing and

reducing environments. A top metal chuck inside the chamber

is used for mounting primers or seeds, while a bottom

counterpart is used for mounting ceramic feed-rod

precursors. The laser beam is focused onto the feedrod,

which is rotated in order to evenly distribute the heat

generated by the laser throughout the molten zone. The

rotating seed or primer is then inserted into the melt and

nucleation is allowed to take place. After several minutes,

the crystal is pulled from the melt by lifting the upper

chuck while feeding at a slower rate with the lower chuck.

The resulting polished crystals are typically 1 to 2 mm in

diameter and 20 to 50 mm long. This growth process has

also been recently described as the laser floating zone

melting method,7 and has been adapted for the growth of

materials with different applications. 8 The specific growth

parameters reported here are summarized in Table I. Because

both titanium and europium are heterovalent, the influence



6

of the growth atmosphere on the valence state must be

considered. For this reason, some samples were grown in

air, and others in 99.95% pure nitrogen.

Single crystal x-ray diffraction, performed on a

Nicolet R3m/U diffractometer, was employed to characterize

the EuA10 3 samples. Evaluation of several axial photographs

reviel that structure has tetragonal P symmetry, rather than

the orthorhombic structure reported by others. 9 The unit

cell parameters of this crystal at room temperature are

a0 = 0.3736 nm and co = 0.7466 nm. Since the pedestal

growth method creates large thermal gradients along the

sample, and perovskites have the propensity for structure

transformations in narrow temperature ranges,10 it is

possible that the observed structure represents a high

temperature phase of EuAlO 3 "frozen in" at room temperature.

This structure is a distortion of the cubic perovskite

structure with a cubic pseudocell size equal to 0.374 nm.

III. Optical Spectroscopy

Optical spectra were taken using a Spex F222 and

Perkin-Elmer Lambda 9 and MPF-66 spectrometers. These

instruments permitted the measurement of absorption,

fluorescence and excitation spectra. The ibsorption

spectrometer is equipped with a 4X beam condenser (Harrick

Scientific Corporation, Ossining, NY). Considerable care
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was taken to discriminate against spurious signals such as

filter fluorescence. Fluorescence lifetime data were taken

using pulsed excitation by the second and third harmonics of

a Quantel Q-switched Nd:YAG laser. Detection was by a

cooled photomultiplier coupled to a quarter meter

monochromator or by a silicon photodiode with color filters.

Low temperature experiments were carried out by placing the

samples on the cold tip of a CTI Model 21 cryogenic

refrigerator.

The absorption spectra of two EuAlO 3 samples grown in

air are shown in Figure 1 Absorption in the undoped

samples for wavelengths longer than 300 nm is attributable

to Eu3 + transitions, Fluorescence from undoped samples'also

exhibits only transitions of this ion. No evidence of Eu2 +

absorption or emission has been found, unlike the results

reported by Jaffe.11 The room temperature fluorescence

lifetime of the Eu3+ 5 D0 state in the undoped sample grown

in air is 2.5 microseconds for 355 nm excitation and 4.5

microseconds for 532 nm excitation. For an undoped sample

grown in nitrogen, the corresponding values are 6.5 and 17

microseconds, respectively. In this sample, lifetimes were

also measured at low temperature, about 20 K, and were found

to be unchanged from the room temperature values. All these

lifetimes are far shorter than observed for systems with

dilute concentrations of Eu which are about 2 to 3

milliseconds even in glass. 12 This must indicate that in
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EuA10 3 the lifetime is limited by interionic processes such

as energy migration to traps. The difference in lifetimes

between the two samples suggests that such traps are more

common in the sample grown in oxidizing atmosphere.

The Eu3+ fluorescence has also been observed in lightly

doped EuAlO3 :Ti samples. Its lifetime at room temperature

under 355 nm excitation is 0.5 microseconds which is much

shorter than in the undoped samples. This suggests that

energy transfer from the Eu3+ is increased in the doped

samples.

As Figure 1 shows, the introduction of titanium into

EuAlO 3 changes its absorption spectrum dramatically. The

strong, very broad absorption band in the visible and near

infrared is not consistent with that expected for Ti 3+ in an

octahedral field. In addition, doping introduces a strong

ultraviolet band between about 400 nm and the absorption

edge of undoped EuAlO 3. The strengths of both these bands

increase in rough proportion to the Ti concentration in the

starting materials, as shown in Figure 2. Since the samples

used are of different thickness, the absorbance values at

345 nm (indicative of the strength of the ultraviolet band)

and at 650 nm (the visible band) are normalized by the

absorbance of the Eu3+ peak near 466 nm in each sample.

Note that two samples were grown with 0.48% (atomic) of Ti

in the starting material, and that both absorption bands are
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stronger for the sample grown in N2 than for that grown in

air.

No fluorescence has been observed from the doped

samples except for weak Eu3+ emission in the most lightly

doped samples. Taken together with the absorption spectra,

it is apparent that little if any of the titanium has

remained in the trivalent state in these samples. The

visible band does not correspond to intra-ionic transitions

in other charge states of Ti, but its strength may be

indicative of a charge transfer transition.

Samples of GdAlO3:Ti3 + have also been grown and

stUdied. In these samples the absorption and fluorescence

in the visible region is consistent with the presence of

Ti3+. The excitation and fluorescence spectra are presented

in Figure 3 for a sample grown in nitrogen with

0.48 weight % Ti added to the melt. The pair of absorption

peaks at 445 and 490 nm may be attributed to transitions

from the 2t2g to the 2 eg state, using the familiar labels

which would apply in a truly octahedral environment, with

the latter level split by the Jahn-Teller effect as well as

by non-octahedral components of the crystal field.

Similarly the fluorescence band position and its room

temperature lifetime of about 5 microseconds are consistent

for a transition from the lower 2 e state to the 2t2g state.

At a temperature of 12 K the fluorescence lifetime was



10

measured to be 14 microseconds, thus implying a quantum

efficiency of 36% at Loom temperature. The positions of

these transitions indicate that the crystal field at the

impurity site is approximately 20% stronger in GdAIO 3 than

in A1 203.
3 The change expected in the crystal field

approximation can be estimated by noting that in A1203 each

Al has three oxygen neighbors at a distance of 0.166 nm and

three at 0.197 nm. Whereas in GdA10 3 , assuming for

simplicity the cubic perovskite structure, each Al has six

oxygen neighbors at a distance of 0.1855 run. 13 The familar

inverse fifth power distance dependence of the crystal field

thus predicts a 16% stronger field in GdAIO 3 than in A1 203 ,

in reasonable agreement with experiment. The excitation

peak at 355 nm does not correspond to any transition within

the 3dI configuration of Ti3+ . It may be due to absorption

by another impurity which then transfers its energy to Ti,

or in view of the discussion of section IV, perhaps to

charge transfer from Ti 3+ to Gd3 + . In any case, it is clear

that the titanium dopant enters the GdAIO 3 lattice in the

trivalent state, in contrast to the situation for EuA1O 3 .

IV. Discussion

The striking difference between the behavior of

titanium in EuA10 3 and GdAIO 3 is probably not attributable

to crystal field effects, as the ionic radii of Eu3+ and

Gd 3 + are quite similar, 0.102 - 0.106 nm and 0.100 - 0.104
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nm respectively. 14 Rather, it is of interest to note that

the third ionization potentials of these two rare earths are

quite different, 24.92 eV for europium and 20.63 eV for

gadolinium. 15 In addition, for the crystal EuTiO 3 , the

europium ions have been found to be divalent and the

titanium ions tetravalent. 16'17 This suggests that in

EuA10 3 :Ti, the dopant ions become tetravalent, each making a

nearby europium divalent to conserve charge. The ability of

Ti to remain trivalent in GdAIO 3 would presumably be due to

the smaller third ionization potential of Gd, inhibiting it

from accepting an electron from Ti.

A simple calculation based on a lattice of point ions

may be undertaken to test the suggestion that Ti in EuA1O 3

is tetravalent and a nearby Eu divalent. Following the work

of Pedrini et al. 18, the energy difference between such a

state and a situation in which both ions are trivalent may

be evaluated in terms of the ionization potentials, Madelung

energies, and crystal field energies of the two ions given

in.Eq. 1..

E(Eu 2 ++Ti 4 + ) - E(Eu 3+ +Ti 3+ ) = I4 (Ti) - 13 (Eu) - EM(Ti site)

+ EM(EU site) - Ec(Ti-Eu) - Ecf(Ti) (1)

Here 14 (Ti) is the fourth ionization potential of titanium,

43.24 eV.1 9  13 (Eu) is the third ionization potential of

europium, EM is the magnitude of the Madelung energy at the

I I I I"
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indicated site, Ec(Ti-Eu) is the magnitude of the Coulomb"

energy of attraction between the extra positive charge on

Ti4+ and the extra electron on Eu2+ , and Ecf(Ti) is the

crystal field contribution to the energy of the ground state

of Ti3+ . The ground state of Ti4+ is nondegenerate and each

valence state of Eu exhibits only a small crystal field

splitting, so that the crystal field contributions for these

ions are neglected. The Madelung energy was calculated by

standard methods.20 To simplify the calculation of the EM

and Ec terms, the lattice has been approximated by that of a

cubic perovskite with lattice constant 0.374 nm. It is

assumed that the Eu which accepts an electron from the Ti is

one of the nearest-neighbor Eu ions. With these

assumptions, EM(Ti site) is 45.95 eV, EM(EU site) is

22.57 eV and Ec(Ti-Eu) is 4.46 eV. The crystal field

contribution to the Ti3 + ground state energy is estimated by

assuming an octahedral environment, so that Ecf = -4Dq, and

was determined from the Ti 3+ spectra in GdAlO 3 to be 1.07

eV. In this way it is estimated that a Ti4+-Eu2 + pair in

EuAlO 3 :Ti is lower in energy than a Ti3 +-Eu 3+ pair by 8.4

eV. Despite the crudeness of the calculation, this result

strongly supports the attribution of the lack of Ti 3+ in

EuAl0 3 :Ti to instability of the trivalent ion.

Comparison of the spectra of Ti in the two hosts

suggests that the above calculation has overestimated the

energy difference between the two charge states. Since the
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major change in the above calculation upon switching to the

GdAIO 3 host is the 4.29 eV difference in 13 of the rare

earth, this calculation predicts that Ti 3+ would also be

unstable in this host. Thus, the presence of Ti 3+ in GdAlO3

may suggest that the energy difference between the two

charge states has been overestimated, and that the

Eu3+-Ti3+ state in EuAlO3 :Ti is higher in energy than the

Eu2+-Ti 4+ state by no more than about 4 eV.

This overestimation is surprising since a similar

approach to the calculation of photoionization energies of

divalent rare earth dopants has generally been accurate to

within an electron volt.21 The larger error in the present

case makes the attribution of the optical properties of

EuAlO 3 :Ti to Ti
4+ less certain. However, the error may

plausibly be attributed to the crudeness of the

calculations. Not only has an idealized (cubic) version of

the crystal structure been used to calculate the Madelung

energies, but, more importantly, no attempt has been made to

correct these energies for the local distortion of the

lattice around the impurity site. Although no data are

available to determine this distortion, it can make a

sizable contribution to the Madelung energies.

The above discussion suggests plausible interpretations

for the strong visible and near infrared absorption band and

for the absorption edge near 400 nm in EuAlO 3 . The visible-
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infrared band may be attributed to a charge transfer

transition in which an electron is moved from a Eu2+ ion to

the nearby Ti4 + . If so, the energy of Eu2+-Ti 4+ pair must

be lower than that of a Eu 3+-Ti 3+ pair by no more than about

one eV. The 400 nm absorption edge lies near the onset of

the lower absorption band of Eu2+ in EuAlO 3 reported by

Jaffell and is also near the absorption edge of TiO 2 , in

which each titanium ion is coordinated by six oxygens much

as in these perovskites. Thus, the ultraviolet absorption

may be due to Eu2 + , Ti4 + , or both. It should be noted that

no evidence of Eu2+ fluorescence has been observed upon

ultraviolet excitation of EuAlO 3 :Ti. However, the strong

visible absorption band overlaps the wavelength range in

which Eu2+ emission is expected, so that efficient energy

transfer, either radiative or nonradiative, may explain this

lack of fluorescence.

The excitation and fluorescence spectra of GdAlO 3 :Ti

permit a preliminary consideration of its potential as a

laser material. The five microsecond lifetime, 9 x 1013 Hz

fluorescence bandwidth and 36% quantum efficiency imply a

peak stimulated emission cross section of 4 x 10- 20 cm 2 .

This is smaller than the peak cross section in A12 03 :Ti and

comparable to that of typical Cr3+-based laser materials.

It will be important to determine the nature of the observed

ultraviolet excitation band. If it is due to Ti 3+ itself

rather than to some inadvertant impurity, it may give rise
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to excited state absorption. The wavelength limit of the

present experiments leaves open the question of whether such

excited state absorption would interfere with laser

emission.

V. Conclusions

A number of properties are important in determining a

material's potential as a solid state laser. In addition to

optical properties such as absorption, excited state

absorption and stimulated emission cross sections, factors

affecting growth such as size and charge matching must also

be considered. The investigation of EuAlO3:Ti presented

here demonstrates the influence which the host can have on

yet another factor, the dopant's valence state. It is

anticipated that similar difficulties would arise for Ti

doping of hosts containing Yb3 + , as it also has a large

third ionization potential. Among the rare earths, only

gadolinium, and perhaps cerium and terbium, has a

sufficiently small third ionization potential and wide

enough absorption-free regions in the visible range to be of

interest for titanium-doped laser materials. As noted in

the previous section, GdAlO3 :Ti does indeed appear to be an

interesting system for further study.

The point-ion based calculation of the energy

difference between the two possible charge states of the
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dopant and a nearest neighbor rare earth was only partially

successful, having predicted that Ti4+ would be more stable

than Ti3+ in GdAlO 3 as well as in EuAIO 3 . Without direct

data on the positions of the ions neighboring the impurity

site, it is difficult to know whether this difficulty is

fully attributed to the crudeness of the ionization

calculations. Based on the known charge states of the Ti

and Eu ions in EuTiO 3 , however, the interpretation of the

spectra given in Section IV remains the most plausible.
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Figure Captions

1. Room temperature optical absorption of two EuAlO 3

samples grown in air. Lower trace: Undoped, sample length

is 1.14 mm. Upper dashed trace: Doped sample with 0.47%

(atomic) Ti. Sample length is 0.71 mm. (The concentration

refers to that in the starting material.)

2. Relative absorbance at 345 rim and at 650 nm versus x in

EuAllxO3 :Ti x . Each value is a ratio of the absorbance at

the stated wavelength to the absozbance of the Eu3+ line at

466 nm.

Squares: Absorbance at 650 nm for samples grown in air.

Asterisk: Absorbance at 650 nm for sample grown in N2 .

Diamonds: Absorbance at 345 rim minus that at 440 nm,

samples grown in air.

Circle: Absorbance at 345 nm minus that at 440 nm, sample

grown in N2.

3. Room temperature fluorescence and excitation spectra of

GdAlO 3 :Ti. The fluorescence spectrum is corrected for

instrument response.
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